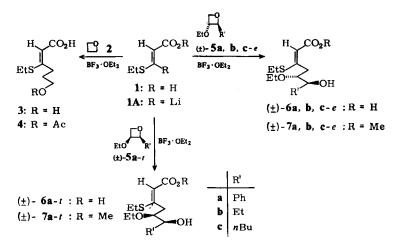
Functionally Substituted Vinyl Carbanions, 29¹⁾

Reaction of a β -Lithiated Acrylate with Oxetanes as Electrophiles

Nabin C. Barua and Richard R. Schmidt*

Fakultät Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz


Received January 27, 1986

Funktionell substituierte Vinylcarbanionen, 291)

Reaktion einer ß-lithiierten Acrylsänre mit Oxetanen als Electrophil

 β -Lithiiertes β -(Ethylthio)acrylat 1 A reagiert mit den Oxetanen 2 bzw. (\pm)-5 in Anwesenheit von Bortrifluorid-Ether zu den entsprechenden γ -hydroxypropyl-substituierten Derivaten 3 bzw. 6. Von den 2-Alkyl/phenyl-3-ethoxy-oxetanen (\pm)-5 reagieren die *erythro*-Derivate deutlich rascher als die *threo*-Derivate.

 β -Lithiated functionally substituted acrylates react with carbonyl compounds as electrophilic-nucleophilic species to give butenolides, tetronates, γ -lactones, and corresponding natural products^{2,3}. With epoxides as electrophilic-nucleophilic species reaction was only observed when boron trifluoride-ether was added as a catalyst⁴. The α,β -unsaturated δ -lactones thus obtained provide a convenient entry into a variety of δ -lactone-type compounds. Enantiomerically pure epoxides were used for natural product syntheses^{4,5}. Here we report on analogous reactions of oxetanes as electrophilic species.

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009-2940/86/0606-2066 \$ 02.50/0

Table 1. Analytical and physical	l data of compound	s 4, '	$7\mathbf{a} - \mathbf{c} - \mathbf{e}$, and $7\mathbf{a} - t$
----------------------------------	--------------------	--------	---

Compound	Yield ^{a)} [%]	m.p. [⁰ C]	Molecular Formula	Analys Calcd.	iis Found	¹ H-NMR (250 MHz, CDCl ₃ , TMS int.) ^{b)} &-values
(2E)-6-Acetoxy-3-(ethylthio)- 2-hexenoic acid (<u>4</u>)	51	70	^C 10 ^H 16 ^O 4 ^S (232.2)		51.91 7.16	11.2(br.s,1H,COOH), 5.42(s,1H,H-2), 4.20(t,2H,2H-6,J=6Hz), 2.9 (q,4H), 2H-4 and $5-C\underline{H}_2-CH_3$, $J=7Hz$), 2.0 (s, 3H,COCH ₃), 2.0-1.7 (m,2H,2H-5), 1.3 (t,3H,CH ₃ ,J=7Hz).
<pre>Methyl (±)-<u>erythro</u>-(2E)-5-Etho xy-3-(ethylthio)-6-hydroxy-6- phenyl-2-hexenoate (<u>7</u>a-g)</pre>	- 55	011	C ₁₇ H ₂₄ O ₄ 8 (324.4)	С 62.94 Н 7.45	62.71 7.40	$\begin{array}{l} 7.5-7.2(m,5H,C_{6}H_{5}),\ 5.51(m,1H,H-2),\\ 4.75(dd,1H,H-6,J=5.2\ and\ 3.6Hz),\ 3.75(m,1H,H-5),3.65(m,3H,0Me),\ 3.5-3.25(m,4H,0H,H-4,\ and\ 0-C\underline{H}_{2}-CH_{3}),\ 2.8(m,3H,H-4^{+}and\ -S-C\underline{H}_{2}-CH_{3}),\ 1.3(t,3H,\\ S-CH_{2}-C\underline{H}_{3},J=7.3Hz),\ 1.0(,3H,0-CH_{2}-C\underline{H}_{3},J=7Hz). \end{array}$
Methyl (<u>†</u>)- <u>threo</u> -(2E)-5-Etho- xy-3-(ethylthio)-6-hydroxy-6- phenyl-2-hexenoate (<u>7</u> <u>a</u> - <u></u> t)	31	011	C ₁₇ H ₂₄ O ₄ S (324.4)	c)		7.5-7.2(m,5H,C ₆ H ₅), 5.51 (s,1H,H-2), 4.75 (dd,1H,H-6,J=5.3 and 3.6 Hz), 3.75 (m,1H,H-5), $3.65(s,3H,OMe)$, $3.5-$ 3.25 (m,3H,OH and $O-CH_2-CH_3$), 3.10 (dd,1H,H-4,J=14.1 and 3.5 Hz), 2.95 (dd,1H,H-4',J=14.1 and 8.5 Hz), 2.75 (d,2H,-S-CH ₂ -CH ₃ ,J=7.3 Hz), 1.3 (t,3H, -S-CH ₂ -CH ₃ ,J=7.3Hz), 1.05 (t,3H,O-CH ₂ - CH ₃ ,J=7 Hz).
Methyl (<u>†</u>)- <u>erythro</u> -(2E)-5-Etho xy-3-(ethylthio)-6-hydroxy-2- octenoate (<u>7</u> <u>b</u> -g)		011	C ₁₃ H ₂₄ O ₄ S (276.3)	С 56.50 Н 8.74	56.52 8.70	$\begin{split} & 5.55(s,1H,H-2), 3.70(s,3H,OMe), 3.55\\ & (m,4H,H-5,H-6, and O-C\underline{H}_2-CH_3), 3.15\\ & (dd,1H,H-4,J=14 and 3.7Hz), 2.95(dd, 1H,H-4',J=14 and 7.6Hz), 2.8(g,2H,S-C\underline{H}_2-CH_3,J=7.6Hz), 2.65(br.s,1H,OH), 1.7-1.5(m,2H,2H-7), 1.35(t,3H,S-CH_2-C\underline{H}_3,J=7.6Hz), 1.15(t,3H,O-CH_2-C\underline{H}_3,J=7.6Hz), 1.0(t,3H,3H-8,J=7Hz). \end{split}$
Methyl (<u>†</u>)- <u>erythro</u> -(22)-5-Etho xy-3-(athylthio)-6~hydroxy-2- decenoate (<u>7</u> <u>c</u> - <u>R</u>)	- 45	oil	C ₁₅ H ₂₈ O ₄ 8 (304.2)	С 59.18 Н 9.27	59.01 9.13	5.54 (s,1H,H-2), 3.7 (m,4H,H-6 and OMe), 3.5 (m,3H,H-5 and $O-C\underline{H}_2-CH_3$), 3.25 (dd,1H,H-4,J=13.3 and 6.3Hz), 2.88 (dd,1H,H-4',J=13.3 and 6.4Hz), 2.80 (q,2H,S-C\underline{H}_2-CH_3,J=7.3Hz), 2.70 (d,1H,OH,J=6Hz), 1.6-1.25 (m,9H,2H-7, 2H-8,2H-9, and S-CH ₂ -C <u>H₃</u>), 1.2 (t,3H, $O-CH_2-C\underline{H}_3$, J=7Hz), 0.9 (t,3H,3H-10, J=7Hz).

^{a)} Yields refer to pure isolated products. - ^{b)} Bruker WM 250 Cryospectrometer. - ^{c)} Not analyzed.

 β -(Ethylthio)acrylic acid (1) was converted with two equivalents of *tert*-butyllithium into the corresponding dilithiated species $1 A^{46}$. Addition of oxetane (2)⁷ in the presence of boron trifluoride-ether as a catalyst afforded hydroxypropylation product 3; ring closure to the corresponding ε -lactone was not observed. Reaction with acetic anhydride in pyridine furnished exclusively O-acetyl derivative 4. Interesting stereoselectivities were observed with the *erythro*- and *threo*-oxetanes (\pm) -5a, c-e and (\pm) -5a-c-t, respectively, which were obtained via known [2 + 2]-photocycloaddition procedures⁸. Reaction of 1A with (\pm) -5a-e gave via attack at the CH₂ group of (\pm) -5a-e the *erythro*-isomer (\pm) -6a-e, which was transferred with diazomethane into methyl ester (\pm) -7a-e. Similarly, from (\pm) -5a-t

Chem. Ber. 119 (1986)

compounds $(\pm)-6\mathbf{a}-t$ and $(\pm)-7\mathbf{a}-t$, respectively, were obtained. However, a 1:1 mixture of excess $(\pm)-5\mathbf{a}-e,t$ yielded compounds $(\pm)-6\mathbf{a}-e$ and $(\pm)-6\mathbf{a}-t$ in a >15:1 ratio, thus demonstrating the much higher reactivity of the *erythro*-oxetane $5\mathbf{a}-e$. The same result was observed with 1:1 mixtures of compounds $(\pm)-5\mathbf{b}-e,t$ and $(\pm)-5\mathbf{c}-e,t$. Compounds $(\pm)-5\mathbf{b}$ afforded the diastereoisomers $(\pm)-6\mathbf{b}-e$ and $(\pm)-6\mathbf{b}-t$ in a >10:1 ratio; from this mixture only the *erythro*-methyl ester $7\mathbf{b}-e$ was isolated and identified. From compounds $(\pm)-5\mathbf{c}$ only the *erythro*-isomer $(\pm)-7\mathbf{c}-e$ could be isolated after diazomethane treatment of the crude reaction product of $(\pm)-6\mathbf{c}$.

Financial support of the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. - N. C. B. is grateful for an Alexander von Humboldt postdoctoral fellowship.

Experimental Part

General Procedure for the Synthesis of Compounds 4, (\pm) -7**a**-**c**-*e*, and (\pm) -7**a**-*t*: To a solution of 5.0 mmol of 1 in 30 ml of dry tetrahydrofuran at -80° C is added dropwise under nitrogen 8.4 ml of a 1.3 M solution of tert-butyllithium in n-hexane. The mixture is stirred at the same temp. for another 2 h and then 5.0 mmol of $BF_3 \cdot OEt_2$ (distilled over CaH₂) is introduced dropwise into the flask with a syringe against a flow of nitrogen. Immediately after BF₃·OEt₂ addition 5.5 mmol of oxetane 2 or (\pm) -5a-c is introduced and the reaction temp. is allowed to reach 0°C over 1 h. A saturated solution of 15 ml of sodium hydrogen carbonate is then added and the temp. allowed to reach 20 °C. The reaction mixture is poured into water, acidified with HCl to pH 1, and extracted with dichloromethane (4 \times 100 ml). The organic phase is washed with 100 ml of water, dried over sodium sulfate and evaporated. The obtained compounds 3 and 6a-c were transferred into Oacetyl derivative 4 by treatment with excess acetic anhydride/pyridine and into methyl esters (\pm) -7a-c by treatment with excess diazomethane in ether. The products were purified by flash chromatography on silica gel (Merck, 230-400 mesh ASTM) with petroleum ether (b. p. $35-80^{\circ}$ C)/ethyl acetate (4:1) as solvent system. For yields, elemental analyses, and ¹H NMR data see Table 1.

CAS Registry Numbers

1: 101541-97-3 / 1a: 101519-17-9 / 2: 503-30-0 / 3: 101541-98-4 / 4: 101541-99-5 / (\pm)-5a-e: 101542-00-1 / (\pm)-5a-t: 101542-01-2 / (\pm)-5b-t: 101542-04-5 / (\pm)-5b-t: 101542-05-6 / (\pm)-5c-e: 101542-09-0 / (\pm)-5c-t: 101542-10-3 / (\pm)-6a-e: 101565-08-6 / (\pm)-6a-t: 101542-06-7 / (\pm)-6b-t: 101542-07-8 / 6c: 101542-12-5 / (\pm)-7a-e: 101565-12-2 / (\pm)-7a-t: 101542-03-4 / (\pm)-7b-e: 101542-08-9 / (\pm)-7c-e: 101542-11-4

¹⁾ Part 28.: N. C. Barua and R. R. Schmidt, Tetrahedron, accepted for publication.

- ⁴⁾ N. C. Barua and R. R. Schmidt, Synthesis, accepted for publication.
- ⁵⁾ N. C. Barua and R. R. Schmidt, Tetrahedron, accepted for publication.
- ⁶⁾ R. Betz, Thesis, Universität Konstanz 1984.
- ^{η} Compound 2 is commercially available from Aldrich Company.
- ⁸⁾ ^{8a)} G. Jones II, Org. Photochem. 5, 1 (1981). ^{8b)} S. H. Schroeter and C. M. Orlando jr., J. Org. Chem. 34, 1181 (1969).

[10/86]

Chem. Ber. 119 (1986)

²¹ R. R. Schmidt, Bull. Soc. Chim. Belg. 92, 825 (1983); R. R. Schmidt in Organic Synthesis an Interdisciplinary Challenge, Vth IUPAC Symposium, J. Streith, H. Prinzbach, G. Schill editors, p. 281, Backwell Scientific Publications, Oxford 1985.

³⁾ N. C. Barua and R. R. Schmidt, Synthesis, accepted for publication.